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1: Motivation



Motivation stuff

X complex manifold, D(X ) is a symmetric monoidal category with duals.

Atiyah class gives Lie algebra T [−1] ∈ D(X ) acting on all objects in D(X ).

Using the diagonal ∆ : X → X × X get adjoint functors

∆∗ : D(X )� D(X × X ) : ∆!.

Define U := ∆!∆∗OX .

Then U is the universal enveloping algebra of T [−1].

Also have U ∼= π∗Hom(∆∗OX , ∆∗OX ).

So U is an associative algebra which acts on everything in the category.

I Is U a Hopf algebra?

I Does U ∈ D(X ) behave like CG ad ∈ Rep(G ) for G a finite group?
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Reconstruction

For C a monoidal category with duals the end construction

E :=
∫
V∈C

V ∨ ⊗ V

gives (if it exists) a Hopf algebra which acts on every object in the category.

E.g. if C = Rep(G ) for G a finite group then E = CG ad.

However, D(X ) does not have enough limits and the end does not exist.

Try a different tack.

For a finite group G the diagonal ∆ : G → G × G gives adjoint functors

∆! : Rep(G )� Rep(G × G ) : ∆∗

with CG ad ∼= ∆∗∆!C.

I Can we use properties of ∆∗ and ∆! to show ∆∗∆!C is a Hopf algebra?
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2: Monads



Monads definition

For C a category a monad T : C → C is an algebra in (End(C), ◦, id).

This amounts to

I endofunctor T : C → C
I a product µ : T ◦ T ⇒ T
I unit ι : id⇒ T

satisfying associativity and unit axioms.

We draw these as follows.

µ ≡
T

T

T

and ι ≡
T

.

These have to satisfy the associativity and unit laws, namely

T

=
T

and T

T

T

=
T

=
T

T

T .
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Example 1: monads from algebras

Suppose (C,⊗, 1) is a monoidal category and A is an algebra in C.

Then (A⊗−) : C → C is a monad.

E.g. For any X in C, the product

µX : A⊗ A⊗ X → A⊗ X

comes, in the obvious way, from the algebra product on A.
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Example 2: monads from adjunctions

Suppose that F : C � D :U forms an adjunction.

The counit ε : F ◦ U ⇒ idD and unit η : idC ⇒ U ◦ F are drawn as follows.

ε ≡
D

C
F U ; η ≡ F

C

D
U .

The required conditions on the unit and counit are drawn as

F

F

U

D

C

= F CD and
D

C
F

U

U

= C DU .

Then U ◦ F : C → C forms a monad.

The multiplication and unit are formed from the unit and counit as follows:

µ ≡
U F

F FU U

; ι ≡
U F

.
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Category of modules

A monad T : C → C has a category of modules CT .

The objects are pairs (X ∈ C, ρ : T (X )→ X ).

The morphisms are morphisms in C commuting with the actions.

E.g. For T = (A⊗−) then CT is the usual category of modules of A.
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3: Bimonads



Bialgebras and tensoring modules

Suppose (C,⊗, 1, τ) is a braided monoidal category (e.g. symmetric).

Then having a bialgebra structure on an algebra A means we can put a
module structure on the tensor product of two modules:

A⊗ X ⊗ Y → A⊗ A⊗ X ⊗ Y → A⊗ X ⊗ A⊗ Y → X ⊗ Y .

More precisely we can say that ⊗ lifts from C to Rep(A).
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Lifting the tensor product for monads

Suppose we have a monad T : C → C on a monoidal category.

If we want to lift ⊗ from C to CT then we cannot do it by thinking of
bialgebras in End(C) as this does not have a braiding, even if C does.

In general, for F1,F2 : C → C

F1 ◦ F2 6∼= F2 ◦ F1.

Theorem (Moerdijk)

Suppose (C ,⊗, 1) is a monoidal category and T : C → C is a monad.
Lifts of ⊗ from C to CT corresponds to opmonoidal structures on T .

For this reason, call a monad with an opmonoidal structure a bimonad.
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Opmonoidal monads, a.k.a. bimonads

Suppose (C,⊗, 1) is monoidal category.

A monad T on C is opmonoidal if we have (not necessarily isomorphisms):

T (1)→ 1 and T (X ⊗ Y )→ T (X )⊗ T (Y ) for X ,Y ∈ C,

in a way compatible with the associativity and unitality of the monoidal
structure and with the product and unit of the monad.

More precisely, an opmonoidal structure on T consists of natural
transformations (obeying associativity and unitality conditions)

σT
2 : T ◦ 1⇒ 1 and σT

2 : T ◦ ⊗ ⇒ ⊗ ◦ (T × T )

which commute with the product µ and unit ι.

Diagrammatically:

σT
0 ≡ , σT

2 ≡ .
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Examples of bimonads
Example

Example: Suppose (C,⊗, 1, τ) is a braided monoidal category.
If A is a bialgebra then (A⊗−) : C → C is a bimonad in an obvious way.

Example

Suppose C and D are monoidal categories.
Given an adjunction F : C � D :U with U strong monoidal, then the monad
UF : C → C is canonically a bimonad with

σUF
2 ≡ U

U

U

F

F

F

, and σUF
0 ≡

FU

.

Example

We have the adjunction ∆! : Rep(G )� Rep(G × G ) : ∆∗.
Pull backs are strong monoidal so ∆∗∆! is a bimonad.
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4: Hopf monads



Hopf algebras

Hopf algebras are bialgebras with a certain property.
[Ignore left and right differences in this talk.]

For a bialgebra A define the fusion operator V : A⊗ A→ A⊗ A as

V := (id⊗ µ) ◦ (δ⊗ id) = .

Theorem (Street?)

A bialgebra A is a Hopf algebra if and only if the fusion operator is invertible.

V−1S = ; V−1 = S .
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Hopf monads (Bruguières, Lack, Virelizier)

For a bimonad T on a monoidal category, the fusion operator

H : T ◦ ⊗ ◦ (id× T )⇒ ⊗ ◦ (T × T )

is defined via

T

T

T

T

A bimonad is a Hopf monad if the fusion operator is invertible.

Theorem (BLV)

Suppose (C,⊗, 1, τ) is a braided monoidal category with duals.
If T is a Hopf monad on C then CT has duals.

Example

If (C,⊗, 1, τ) is a braided monoidal category and A is a Hopf algebra then the
bimonad (A⊗−) is a Hopf monad.
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Examples of Hopf monads
Example

Given an adjunction F : C � D :U with U strong monoidal, then

H :=
FU

U

F

U F

is invertible ⇐⇒ H :=
F

F

U

is invertible

In other words, if and only if we have natural isomorphisms

F (X ⊗ U(Y ))
∼−→ F (X )⊗ Y for all X ∈ C,Y ∈ D.

In this case we say the projection formula holds.
So UF is a Hopf monad if and only if the projection formula holds.

Example

A classic example is for f : G → K finite group homomorphism then

f!(V ⊗ f ∗W ) ∼= f!V ⊗W for all V ∈ Rep(G ),W ∈ Rep(K ).
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Categories with duals

If we have a monoidal category C with a duals, then we have ∨: Cop → C with
coevaluation and evaluation maps.

ev : X∨ ⊗ X → 1 and coev : 1→ X ⊗ X∨.

These give rise to so-called dinatural transformations which can be drawn as

ev ≡ coev ≡ .

These satisfy the so-called snake relations which become the following:

= ; = .
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The projection formula

Theorem (Fausk, Hu, May?)

Given an adjunction F : C � D :U with U strong monoidal, such that C and
D have duals then the projection formula holds, so UF is a Hopf monad.

We can write down the inverse of the Hopf operator explicitly in this case.

H−1 =

So ∆∗∆! is a Hopf monad — for both Rep(G ) and D(X ).

Question: Is ∆∗∆!
∼= (A⊗−), as Hopf monads, for a Hopf algebra A?

In that case we would have A = ∆∗∆!(1).
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5: Augmented Hopf monads



Augmentations

An augmentation of a Hopf monad T is a bimonad map e : T → id.

An augmentation is the same as an action on each object of the category:

eX : T (X )→ X for all X .

And in fact gives a functor C → CT .

Theorem (BLV)

Let T be a Hopf monad on a braided monoidal category (C,⊗, 1, τ).

T ∼= (T (1)⊗−) as Hopf monads, with T (1) a Hopf algebra

⇐⇒ ∃e : T → id an augmentation compatible with the braiding τ.

[If T is braided opmonoidal then all augmentations are compatible with τ.]
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Augmentations from right inverses

Now we will use the fact that the diagonal map ∆ has one sided inverses.

Theorem
If C and D are braided monoidal with duals, F : C � D :U is an adjunction
with U strong monoidal and U has a right inverse W , then UF has an
augmentation e : UF → id and UF ∼= (UF (1)⊗−) as Hopf monads.

FU
U

W

For the adjunctions

∆! : Rep(G )� Rep(G × G ) : ∆∗ and ∆! : D(X )� D(X × X ) : ∆∗

we can take W to be either π∗1 or π∗2: we have two augmentations!
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The payoff

We thus find that both

∆∗∆!(C) ∼= CG ad ∈ Rep(G )

and

∆∗∆!(OX ) ∼=
(
∆∗∆∗(OX )

)∨ ∼= ∆!∆∗(OX ) = U ∈ D(X )

are Hopf algebras which act on the objects in their respective categories.

We can be write down the structure explicitly.
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