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Optimal transport: primal problem

Suppliers S1, ..., Ss, supply 01, ..., 0s; receivers Ry, ... R, demand p1,...p,.
Cost of moving one unit from S; to R; is kjj € R>g

kij Rl R2 R3 (o 1Y
S 1 4 6 S 10 Ry

S 2 10 1 S 11 Ry 12
S3 8 7 8 S3 7 R3 8

Definition (Primal optimal transport problem)
Given k, 0 and p as above, find a transport plan {a;i};; which minimizes

cost = ZU kijocij

subject to the supply and demand constraints:

Yo i >0 Zj wjj < 0.
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Linear programming duality

Definition (Primal linear programming problem)
Given {be}, {cr} and {Acr} find non-negative xi, ..., Xn which minimizes

Zf Crxe
such that ) Aerxr < be.

Definition (Dual linear programming problem)
Given {be}, {cr} and {Ac} find non-negative yi, ..., ym which maximizes

E:Ze Yebe

such that ) . yeAer < cr.
Theorem (Strong linear programming duality)

inf Efcfo: sup Zeyebe.

feasible x feasible y
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Optimal transport: dual problem

Definition (Dual optimal transport problem)

Given k, o and p, find prices vy, ..., vs and uy, ..., u, which maximize

revenue = Zi ujp; — Zi VO
subject to the competitive pricing constraint: u; — v; < kj;.

The Fable

A transportation company offers alternative transportation for the goods.
They have an unusual pricing structure.

They will buy the goods for unit price v; from supplier S;.

They will sell the goods for unit price u; to receiver R;.

The constraint ensures that they are cheaper than the original transportation.

Theorem
Minimum cost of primal problem equals maximum revenue of dual problem.
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Example optimal solutions

Ri R Rs|
St 5 5 0 10
S 3 0 8 | 11 cost =88
S3 0 7 0 7

8 12 8 |

v u
S5 3 Ri 4  revenue = 88
S, 2 Ry, 7
S3 0 Ry 3
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Duality within the dual

Suppose prices {v;} are chosen by the transportation company at suppliers.
What are the highest feasible prices {7;} to sell to the receivers?

i := min;i{k;j + v}
Similarly for {uj} prices at receivers, the lowest feasible prices at supplier i is
dj := max(max;{u;j — kji},0).

This process is idempotent: v = 0.
If (v, u) is an optimal pricing plan then we can assume tightness, i.e. that

v=id and ¥V =u,
so we can look for optimal pricing plans in the centre of an ‘adjunction’:
—

{prices at suppliers, v} ; {prices at recievers, u}.
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Metric spaces and enriched categories

small category V-category metric space
set of objects set of objects set of points
morphism set C(x, y) hom object C(x,y) € Ob(V)  distance d(x,y) € [0, o]
C(x,y)xC(y,z) = C(x,z) C(x,y)®C(y,z) > C(x,z) d(x,¥)+d(y,z) >d(x,2z2)
id € C(x, x) 1 — C(x, x) 0 =d(x,x)

We can define the notion of V-category for any monoidal category (V, ®,1).
Eg
(Set, x, {*}), (Truth,A,T), (R} = ([0,0],>),+,0)

The notion of V-functor for metric spaces is ‘distance non-increasing map'.
Moreover, R is complete, cocomplete, closed symmetric monoidal:

[x,y] =y —x:=max(y — x,0)

This allows, eg, definition of functor V-categories.
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V-profunctors (for V sufficiently nice)

Profunctor f: C -» D for V-categories C and D means f: CP @D — V.
Composition C LD & € defined by

d
gof(ce):= / g(d,e)®f(c,d) =ming(g(d,e)+f(c,d))
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V-profunctors (for V sufficiently nice)

Profunctor f: C -+ D for V-categories C and D means f: CP @ D — V.
Composition C LD & € defined by

d
gof(ce):= / g(d,e)®f(c,d) =ming(g(d,e)+f(c,d))

These form a bicategory Prof which is ‘composition closed’ (aka biclosed),
i.e., composition with fixed profunctor has a right adjoint.

£, i
Prof(C,D) L Prof(C,E) L Prof(D,€)
—— —

g>— —af
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Note that if * is the unit V-category then
Prof(x, D) = Fun(D, V) = VP,
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Modelling optimal transport with enriched categories

We enrich over ‘cost’ which we take to be non-negative real numbers.
Our V-categories are generalized metric spaces.

Suppliers: S discrete R, -category
Receivers: R discrete IR -category

Transport cost: k: S -+ R R, -profunctor

Prices at suppliers: v: S —+ R, R, -functor
Prices at receivers: u: R = Ry Ri-functor

The price duality in the dual problem arises as the ‘Kan-type' adjunction.

ko—

—§ — =R
veR, 1 R,>u
s
o

This is categorically inevitable.
The tight price plans are those in the centre Z of this adjunction:

Z::{(v,u)Eﬁixﬁf\kov:u; v=kpou}.
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A first example

uy

=y
7
The profunctor is k = (3).
N 4 Calculate the tight price plans: '
-2 —1 e 4
R1 ZCR, xR} B 0
4 5
070
Here are the projections drawn in a more standard way.
V2
4
0 V1 o u
0 5 0 7
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More examples

21
(35)
8 8
6
4 4
2
0 0
0 4 8 0 2 4 6 8
27
(55)
8 8
4 4
0 0
0 4 8 0 4 8
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And more examples

4 6
10 5
1111
8 14

(A 2d complex in 4d) 15

/N
N

=
~NgH

[oc) le)]
N——
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Properties of quantale-enriched adjunctions

Every adjunction is idempotent
RLR=R and LRL=1L.

Can use standard adjunction properties,
e.g. left adjoints preserve colimits.

VC: colimits are pointwise product and copow-
ers.

In our case this means that Fix(RL) is the trop-
ical (min, 4) span of the rows of k.

Fix(RL) Fix(LR

H L H

Im(R) =~ Im(L)
R

|

CCD

CxD
U
L%R

=
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Tropical convex hull
The usual convex hull of points {pj}5_; C R" is

‘{15:37::1 o;pi | :E::fzzl a;, =1, a; € ][{AF:} .

In the tropical version & = min, - = + and the tropical convex hull is

s .
{@;:1 aj-pi | minf_;a; =0, a; € ]R+} )

[ ]
12 . The finite part of the set of tight price
plans for receivers (where we need to
8 look for optimal price plans) is the trop-
ical convex hull set of costs to each
4 supplier.
0 0 4 8 12

13/16



Isbell-type adjunction

Given a V-profunctor f: C + D, from the closed structure we get another

adjunction

—>k
Ve T (VP)op
—>k

The centre of this adjunction (the profunctor nucleus) arises in other
optimization and related areas.

> tight spans of metric spaces (server placement on networks)

» fuzzy concept analysis

» Legendre-Fenchel transform

> multi-commodity flow

3 3
21 R. - ? ?
(51) overR,: ) .
0 0 ‘ : '
01 2 3 01 2 3
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Star autonomy implies Kan-centres are Isbell-centres

Suppose V is closed monoidal and for some d € V the map
v [[v,d], d]
is an isomorphism for all v then V is star-autonomous.

(=) =[—.d]: V 5 pop

» R and Truth are star-autonomous,
> R, is not.
Given k: C -+ D get k*: C°P —+ D°P.
If V is x-autonomous, then all Kan-type centres arise as Isbell-type centres.

ko—
Ve 12 VP

e
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Summary

It seems that (enriched) category theory could be an organising structure for
optimization and related areas similarly to how it is for other disciplines.
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