Instantaneous dimension of finite metric spaces via magnitude and spread

Simon Willerton
University of Sheffield

Applied Topology in Będlewo 2017

Instantaneous dimension of finite metric spaces via magnitude and spread

Simon Willerton
University of Sheffield

Applied Category Theory in Będlewo 2017

What is the dimension?

Measure of size: magnitude [Leinster]
Finite metric space ($X, \mathrm{~d}$) with N points.

Measure of size: magnitude [Leinster]

Finite metric space $(X, \mathrm{~d})$ with N points.
Define weight $w_{i} \in \mathbb{R}$ for each point $i \in X$ so that

$$
\sum_{i} \mathrm{e}^{-\mathrm{d}(i, j)} w_{i}=1 \quad \text { for every } j
$$

Measure of size: magnitude [Leinster]

Finite metric space $(X, \mathrm{~d})$ with N points.
Define weight $w_{i} \in \mathbb{R}$ for each point $i \in X$ so that

$$
\sum_{i} \mathrm{e}^{-\mathrm{d}(i, j)} w_{i}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i} .
$$

Measure of size: magnitude [Leinster]

Finite metric space $(X, \mathrm{~d})$ with N points.
Define weight $w_{i} \in \mathbb{R}$ for each point $i \in X$ so that

$$
\sum_{i} \mathrm{e}^{-\mathrm{d}(i, j)} w_{i}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i} .
$$

Measure of size: magnitude [Leinster]

Finite metric space $(X, \mathrm{~d})$ with N points.
Define weight $w_{i} \in \mathbb{R}$ for each point $i \in X$ so that

$$
\sum_{i} \mathrm{e}^{-\mathrm{d}(i, j)} w_{i}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i} .
$$

Measure of size: magnitude [Leinster]

Finite metric space $(X, \mathrm{~d})$ with N points.
Define weight $w_{i} \in \mathbb{R}$ for each point $i \in X$ so that

$$
\sum_{i} \mathrm{e}^{-\mathrm{d}(i, j)} w_{i}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i} .
$$

$$
|X| \sim 1.47
$$

Magnitude function: scaling a space

Magnitude function: scaling a space

$$
t X:=0 \stackrel{\mathrm{t}}{\mathrm{t}} \longleftrightarrow{ }^{\circ} 0.001 \mathrm{t}
$$

Magnitude function: scaling a space

$$
t X:=\longleftrightarrow \stackrel{t}{\mathrm{t}} \longleftrightarrow{ }_{0} 0.001 \mathrm{t}
$$

Magnitude function: scaling a space

$$
t X:=\longleftrightarrow \frac{\mathrm{t}}{\mathrm{t}} \longleftrightarrow{ }_{0} 0.001 \mathrm{t}
$$

As any space X is scaled bigger and bigger $|t X| \rightarrow N$.

Measure of size: spread [Willerton]

One parameter family of measures of size $\left\{\mathrm{E}_{q}\right\}_{q=0}^{\infty}$.
Closely related to magnitude but simpler and better behaved.

$$
\mathrm{E}_{q}(X):=\left(\frac{1}{N} \sum_{i}\left(\frac{N}{\sum_{j} \mathrm{e}^{-\mathrm{d}(i, j)}}\right)^{1-q}\right)^{\frac{1}{1-q}}
$$

In particular,

$$
\mathrm{E}_{0}(X)=\sum_{i}^{N} \frac{1}{\sum_{j} \mathrm{e}^{-\mathrm{d}(i, j)}} ; \quad \mathrm{E}_{2}(X)=\frac{N^{2}}{\sum_{i, j} \mathrm{e}^{-\mathrm{d}(i, j)}}
$$

If X is homogeneous then $\mathrm{E}_{q}(X)=|X|$ for all q.

More on spread

1. $1 \leq \mathrm{E}_{q}(X) \leq N$;
2. $\mathrm{E}_{q}(t X)$ is increasing in t;
3. $\mathrm{E}_{q}(t X) \rightarrow 1$ as $t \rightarrow 0$;
4. $\mathrm{E}_{q}(t X) \rightarrow N$ as $t \rightarrow \infty$.

Dimension

In a metric space what should happen to the size when we scale distances?

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:
3 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

9 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

9 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

3 times as big

9 times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

$$
3^{1}=3 \text { times as big }
$$

$$
3^{2}=9 \text { times as big }
$$

$3^{\log _{3} 2}=2$ times as big

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Think of dimension as how the size changes when the distances are changed.

Dimension

In a metric space what should happen to the size when we scale distances?
For example, triple the distances:

Think of dimension as how the size changes when the distances are changed. Given 'size' can see if it gives a good idea of dimension.

Instantaneous dimension

Given a notion of size S, if

$$
S(t X)=a \cdot t^{d}
$$

then we want

$$
\operatorname{dim}_{S}(t X)=d \quad \text { for all } t
$$

Instantaneous dimension

Given a notion of size S, if

$$
S(t X)=a \cdot t^{d}
$$

then we want

$$
\operatorname{dim}_{S}(t X)=d \quad \text { for all } t
$$

Define the instantaneous dimension by

$$
\operatorname{dim}_{S}(t X):=\frac{\mathrm{d} \log (S(t X))}{\mathrm{d} \log t}
$$

Instantaneous dimension

Given a notion of size S, if

$$
S(t X)=a \cdot t^{d}
$$

then we want

$$
\operatorname{dim}_{S}(t X)=d \quad \text { for all } t
$$

Define the instantaneous dimension by

$$
\operatorname{dim}_{S}(t X):=\frac{\mathrm{d} \log (S(t X))}{\mathrm{d} \log t}
$$

Think of $\operatorname{dim}_{S}(t X)$ as t varies as the dimension profile of X.

Can you identify these 10 point clouds from just their dimension profile????

Profile 1

Profile 1

Answer: Our little 3 point space.

Profile 2

Profile 2

Profile 2

Answer: 1,000 points in the interval $[0,1]$.

Profile 3

Profile 3

Profile 3

Answer: 100,000 points in the interval $[0,1]$.

Profile 4

Profile 4

Profile 4

Answer: 270×270 grid of points.

Profile 5

Profile 5

Answer: 12×6000 grid of points.

Profile 6

Profile 6

Profile 6

Answer: 2000 points in a circle in the plane.

Profile 7

Profile 7

Profile 7

Answer: 20000 points in a circle in the plane.

Profile 8

Profile 8

Profile 8

Answer: 10000 points in a 'noisy' circle in the plane.

Profile 9

Profile 9

Profile 9

Answer: 2048 points in the Cantor set.

Profile 9

Answer: 2048 points in the Cantor set.

Profile 9

Answer: 2048 points in the Cantor set.

Profile 10

Profile 10

Profile 10

Answer: 16385 points in the Sierpinski gasket.

Challenge

Calculate the dimension profiles for some interesting data sets!

