Instantaneous dimension of finite metric spaces via magnitude and spread

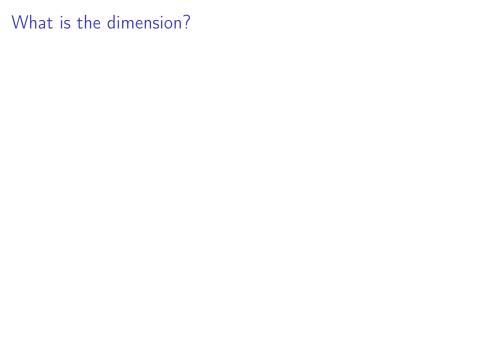
Simon Willerton University of Sheffield

Applied Topology in Będlewo 2017

Instantaneous dimension of finite metric spaces via magnitude and spread

Simon Willerton University of Sheffield

Applied Category Theory in Będlewo 2017



Finite metric space (X,d) with N points.

Finite metric space (X,d) with N points.

Define weight $w_i \in \mathbb{R}$ for each point $i \in X$ so that

$$\sum_{i} e^{-d(i,j)} w_i = 1 \qquad \text{for every } j.$$

Finite metric space (X,d) with N points.

Define weight $w_i \in \mathbb{R}$ for each point $i \in X$ so that

$$\sum_{i} e^{-d(i,j)} w_i = 1 \qquad \text{for every } j.$$

Define the magnitude by

$$|X|=\sum_i w_i.$$

Finite metric space (X,d) with N points.

Define weight $w_i \in \mathbb{R}$ for each point $i \in X$ so that

$$\sum_{i} e^{-d(i,j)} w_i = 1 \qquad \text{for every } j.$$

Define the magnitude by

$$|X| = \sum_{i} w_{i}.$$

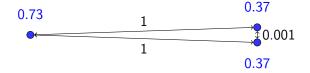
Finite metric space (X,d) with N points.

Define weight $w_i \in \mathbb{R}$ for each point $i \in X$ so that

$$\sum_{i} e^{-d(i,j)} w_i = 1 \qquad \text{for every } j.$$

Define the magnitude by

$$|X|=\sum_i w_i.$$



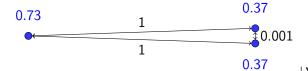
Finite metric space (X,d) with N points.

Define weight $w_i \in \mathbb{R}$ for each point $i \in X$ so that

$$\sum_{i} e^{-d(i,j)} w_i = 1 \qquad \text{for every } j.$$

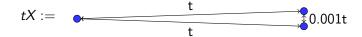
Define the magnitude by

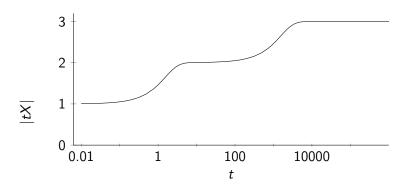
$$|X|=\sum_i w_i.$$

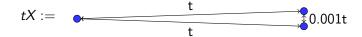


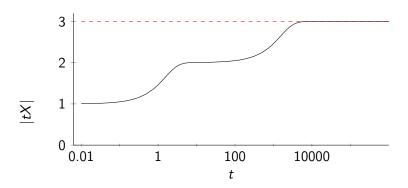
 ~ 1.47

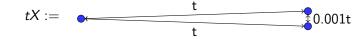
$$tX :=$$
 t
 $0.001t$

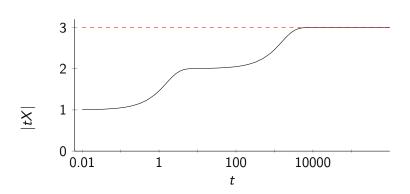












As any space X is scaled bigger and bigger $|tX| \rightarrow N$.

Measure of size: spread [Willerton]

One parameter family of measures of size $\{\mathsf{E}_q\}_{a=0}^\infty$.

Closely related to magnitude but simpler and better behaved.

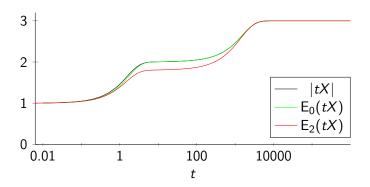
$$\mathsf{E}_q(X) := \left(\frac{1}{N} \sum_i \left(\frac{N}{\sum_j \mathsf{e}^{-\mathsf{d}(i,j)}}\right)^{1-q}\right)^{\frac{1}{1-q}}$$

In particular,

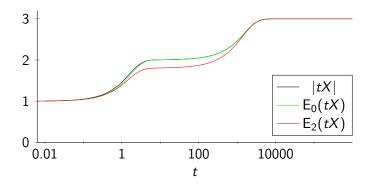
$$\mathsf{E}_0(X) = \sum_{i}^{N} \frac{1}{\sum_{j} \mathsf{e}^{-\mathsf{d}(i,j)}}; \qquad \mathsf{E}_2(X) = \frac{N^2}{\sum_{i,j} \mathsf{e}^{-\mathsf{d}(i,j)}}$$

If X is homogeneous then $E_q(X) = |X|$ for all q.

More on spread



More on spread



- 1. $1 \le E_q(X) \le N$;
- 2. $E_q(tX)$ is increasing in t;
- 3. $E_a(tX) \rightarrow 1$ as $t \rightarrow 0$;
- 4. $E_a(tX) \to N$ as $t \to \infty$.

In a metric space what should happen to the size when we scale distances?

In a metric space what should happen to the size when we scale distances?

In a metric space what should happen to the size when we scale distances?

In a metric space what should happen to the size when we scale distances?

In a metric space what should happen to the size when we scale distances?

In a metric space what should happen to the size when we scale distances?

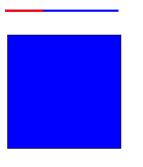
For example, triple the distances:

In a metric space what should happen to the size when we scale distances?

For example, triple the distances:

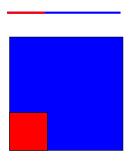
In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



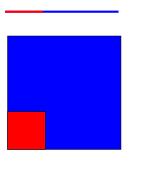
In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



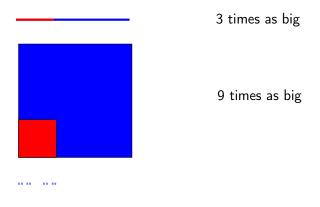
In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



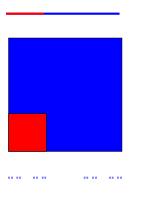
3 times as big

In a metric space what should happen to the size when we scale distances?



In a metric space what should happen to the size when we scale distances?

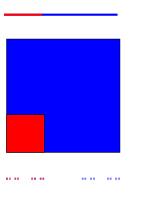
For example, triple the distances:



3 times as big

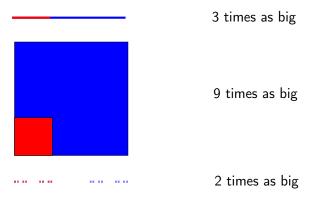
In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



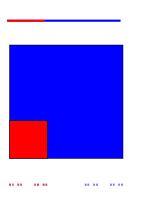
3 times as big

In a metric space what should happen to the size when we scale distances?



In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



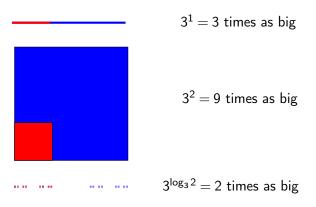
$$3^1 = 3$$
 times as big

$$3^2 = 9$$
 times as big

 $3^{\log_3 2} = 2$ times as big

In a metric space what should happen to the size when we scale distances?

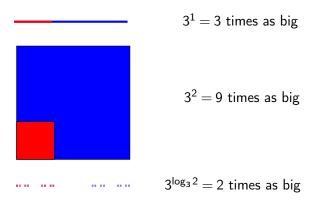
For example, triple the distances:



Think of dimension as how the size changes when the distances are changed.

In a metric space what should happen to the size when we scale distances?

For example, triple the distances:



Think of dimension as how the size changes when the distances are changed. Given 'size' can see if it gives a good idea of dimension.

Instantaneous dimension

Given a notion of size S, if

$$S(tX) = a \cdot t^d$$

then we want

$$\dim_{\mathcal{S}}(tX) = d$$
 for all t .

Instantaneous dimension

Given a notion of size S, if

$$S(tX) = a \cdot t^d$$

then we want

$$\dim_{S}(tX) = d$$
 for all t .

Define the instantaneous dimension by

$$\dim_S(tX) := \frac{\operatorname{dlog}(S(tX))}{\operatorname{dlog} t}.$$

Instantaneous dimension

Given a notion of size S, if

$$S(tX) = a \cdot t^d$$

then we want

$$\dim_S(tX) = d$$
 for all t .

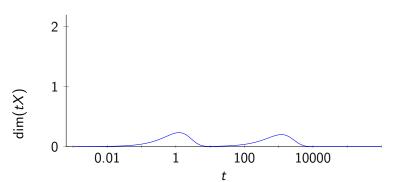
Define the instantaneous dimension by

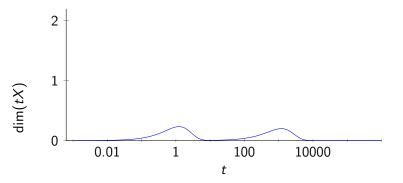
$$\dim_{S}(tX) := \frac{\operatorname{d}\log(S(tX))}{\operatorname{d}\log t}.$$

Think of $\dim_S(tX)$ as t varies as the dimension profile of X.

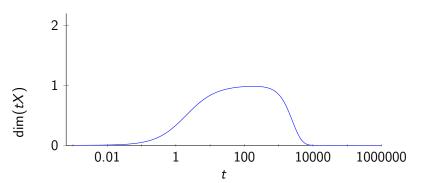
Can you identify these 10 point clouds

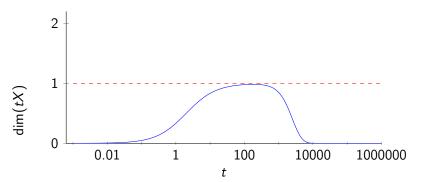
from just their dimension profile????

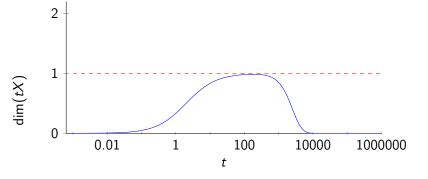




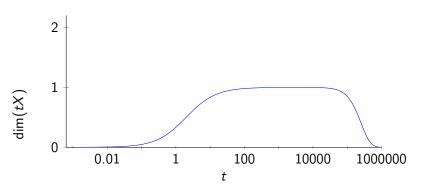
Answer: Our little 3 point space.

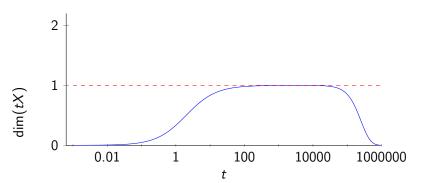


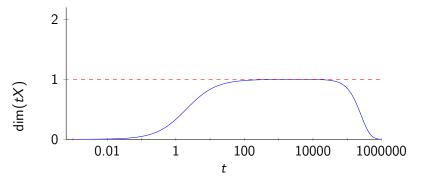




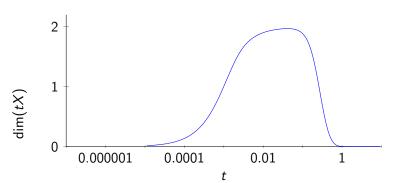
Answer: 1,000 points in the interval [0,1].

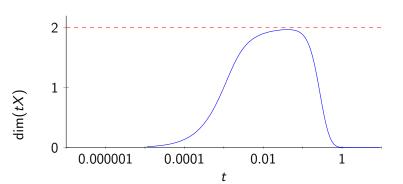


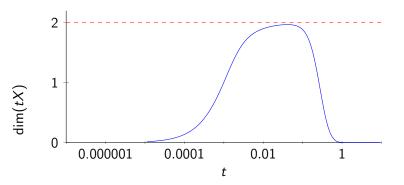




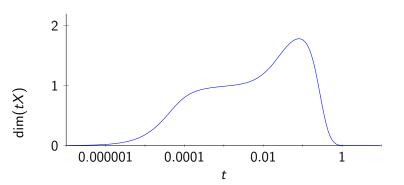
Answer: 100,000 points in the interval [0,1].

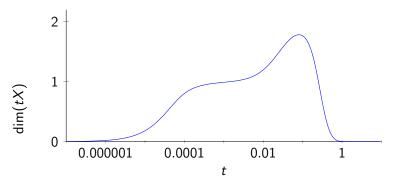




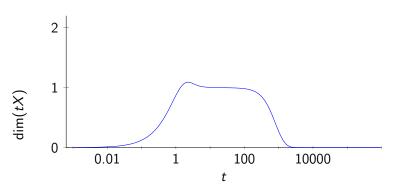


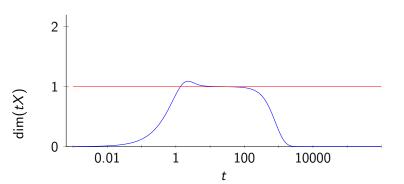
Answer: $270\times270\mbox{ grid}$ of points.

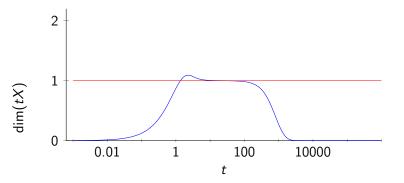




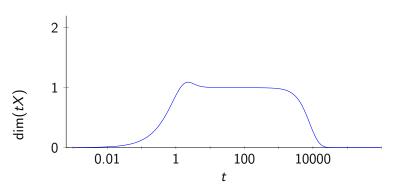
Answer: $12\times6000\ \text{grid}$ of points.

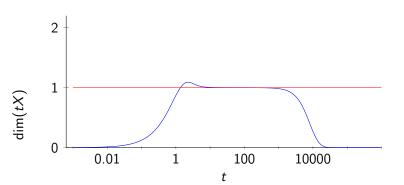


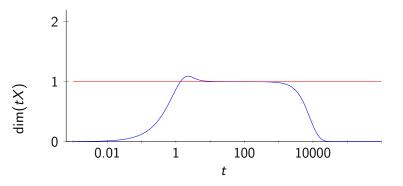




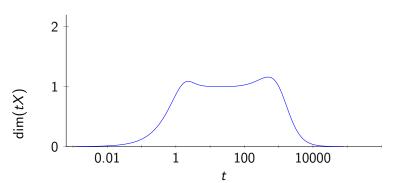
Answer: 2000 points in a circle in the plane.

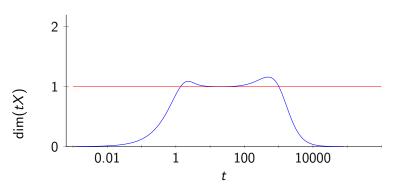


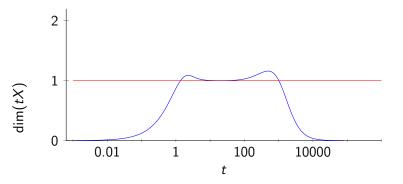




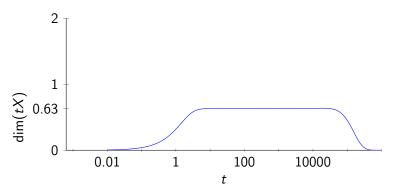
Answer: 20000 points in a circle in the plane.

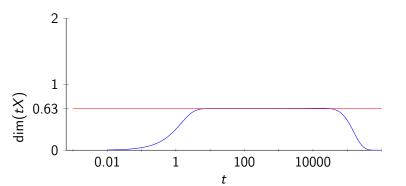


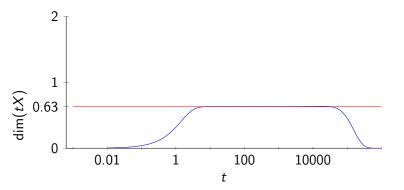




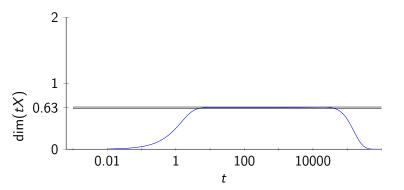
Answer: 10000 points in a 'noisy' circle in the plane.



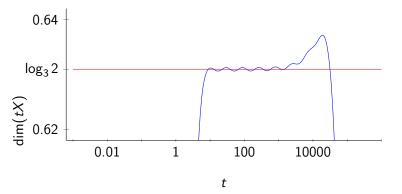




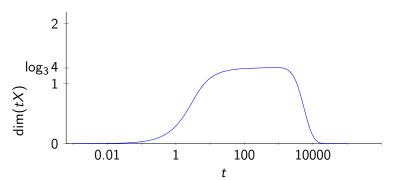
Answer: 2048 points in the Cantor set.

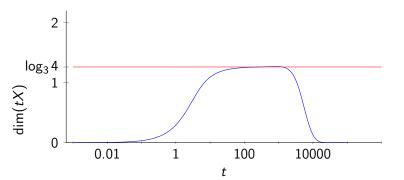


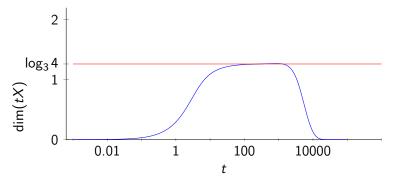
Answer: 2048 points in the Cantor set.



Answer: 2048 points in the Cantor set.







Answer: 16385 points in the Sierpinski gasket.

 ${\sf Calculate\ the\ dimension\ profiles\ for\ some\ interesting\ data\ sets!}$