Measuring metric spaces: short sightedness and population diversity

Simon Willerton

1: Defining the cardinality

Measuring a metric space

How many things are there?

Measuring a metric space

How many things are there?

Measuring a metric space

\square
How many things are there?

Measuring a metric space

\square
How many things are there?
We want to measure the 'size' of a set of points with distances.

Measuring a metric space

\square
How many things are there?
We want to measure the 'size' of a set of points with distances.

Measuring a metric space

\square
How many things are there?
We want to measure the 'size' of a set of points with distances.

Metric spaces

Definition

A metric space is a set X with a 'distance' $d_{i j} \in[0, \infty]$ between each pair of points $i, j \in X$ such that

- triangle inequality: $d_{i k} \leq d_{i j}+d_{j k}$
- no self-distance: $d_{i j}=0$ for all $i \in X$
- separation: if $i \neq j$ then $d_{i j} \neq 0$
- symmetry: $d_{i j}=d_{j i}$

Metric spaces

Definition

A metric space is a set X with a 'distance' $d_{i j} \in[0, \infty]$ between each pair of points $i, j \in X$ such that

- triangle inequality: $d_{i k} \leq d_{i j}+d_{j k}$
- no self-distance: $d_{i j}=0$ for all $i \in X$
- separation: if $i \neq j$ then $d_{i j} \neq 0$
- symmetry: $d_{i j}=d_{j i}$

Example

- Euclidean distances between points

Metric spaces

Definition

A metric space is a set X with a 'distance' $d_{i j} \in[0, \infty]$ between each pair of points $i, j \in X$ such that

- triangle inequality: $d_{i k} \leq d_{i j}+d_{j k}$
- no self-distance: $d_{i j}=0$ for all $i \in X$
- separation: if $i \neq j$ then $d_{i j} \neq 0$
- symmetry: $d_{i j}=d_{j i}$

Example

- Euclidean distances between points
- 'Difference' between species in a population

Metric spaces

Definition

A metric space is a set X with a 'distance' $d_{i j} \in[0, \infty]$ between each pair of points $i, j \in X$ such that

- triangle inequality: $d_{i k} \leq d_{i j}+d_{j k}$
- no self-distance: $d_{i j}=0$ for all $i \in X$
- separation: if $i \neq j$ then $d_{i j} \neq 0$
- symmetry: $d_{i j}=d_{j i}$

Example

- Euclidean distances between points
- 'Difference' between species in a population
- Distance in an evolutionary tree

Metric spaces

Definition

A metric space is a set X with a 'distance' $d_{i j} \in[0, \infty]$ between each pair of points $i, j \in X$ such that

- triangle inequality: $d_{i k} \leq d_{i j}+d_{j k}$
- no self-distance: $d_{i j}=0$ for all $i \in X$
- separation: if $i \neq j$ then $d_{i j} \neq 0$
- symmetry: $d_{i j}=d_{j i}$

Note

Not every metric space is embeddable in Euclidean space.

Defining the cardinality (I)

Definition
If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]
2. Invert Z (if possible).

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]
2. Invert Z (if possible).
3. Define $|X|$ as the sum of the entries of Z^{-1}.

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]
2. Invert Z (if possible).
3. Define $|X|$ as the sum of the entries of Z^{-1}.

For $t \in(0, \infty)$ let $t X$ be X scaled by a factor of t.

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]
2. Invert Z (if possible).
3. Define $|X|$ as the sum of the entries of Z^{-1}.

For $t \in(0, \infty)$ let $t X$ be X scaled by a factor of t.
Define the cardinality function of X to be $|t X|$.

Defining the cardinality (I)

Definition

If X is a finite metric space then (try to) define the cardinality $|X|$ as follows.

1. Define the closeness (or similarity) matrix Z by $Z_{i j}:=e^{-d_{i j}}$. [Z is symmetric with entries in $[0,1]$ and 1 s on the diagonal.]
2. Invert Z (if possible).
3. Define $|X|$ as the sum of the entries of Z^{-1}.

For $t \in(0, \infty)$ let $t X$ be X scaled by a factor of t.
Define the cardinality function of X to be $|t X|$.

Example

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.
- If all distances are finite then $|t X| \rightarrow 1$ as $t \rightarrow 0$.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.
- If all distances are finite then $|t X| \rightarrow 1$ as $t \rightarrow 0$.
- If X has n points then $|t X| \rightarrow n$ as $t \rightarrow \infty$.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.
- If all distances are finite then $|t X| \rightarrow 1$ as $t \rightarrow 0$.
- If X has n points then $|t X| \rightarrow n$ as $t \rightarrow \infty$.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.
- If all distances are finite then $|t X| \rightarrow 1$ as $t \rightarrow 0$.
- If X has n points then $|t X| \rightarrow n$ as $t \rightarrow \infty$.

Some obvious conjectures

Conjecture

- Every finite metric space has a cardinality.
- $|t X|$ is an increasing function of t.
- If X has n points then $1 \leq|X| \leq n$.
- If all distances are finite then $|t X| \rightarrow 1$ as $t \rightarrow 0$.
- If X has n points then $|t X| \rightarrow n$ as $t \rightarrow \infty$.

Theorem

For any X with n points there exists a t_{0} such that for $t>t_{0}$ the cardinality $|t X|$ exists, is increasing and tends to n as $t \rightarrow \infty$.

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

If X has a weighting w then define $|X|:=\sum_{i} w_{i}$.

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

If X has a weighting w then define $|X|:=\sum_{i} w_{i}$.

Theorem

- If a weighting exists then it is unique.

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

If X has a weighting w then define $|X|:=\sum_{i} w_{i}$.

Theorem

- If a weighting exists then it is unique.
- If Z is invertible then $w_{i}:=\sum_{j}\left(Z^{-1}\right)_{i j}$ is a weighting.

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

If X has a weighting w then define $|X|:=\sum_{i} w_{i}$.

Theorem

- If a weighting exists then it is unique.
- If Z is invertible then $w_{i}:=\sum_{j}\left(Z^{-1}\right)_{i j}$ is a weighting.

Defining the cardinality (II)

Definition

Given a finite metric space X, a weighting on X is a number $w_{i} \in \mathbb{R}$ for each point $i \in X$ such that

$$
\sum_{j \in X} e^{-d_{i j}} w_{i}=1 \quad \text { for all } i \in X, \quad \text { i.e. } \quad Z w=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

If X has a weighting w then define $|X|:=\sum_{i} w_{i}$.

Theorem

- If a weighting exists then it is unique.
- If Z is invertible then $w_{i}:=\sum_{j}\left(Z^{-1}\right)_{i j}$ is a weighting.

Note

- The weights do not have to be positive!

2: Diversity measures and cardinality

Diversity measures (preliminaries)

Definition

- A probability metric space is a finite metric space X with $p_{i} \in[0,1]$ for each $i \in X$ such that $\sum p_{i}=1$.

Diversity measures (preliminaries)

Definition

- A probability metric space is a finite metric space X with $p_{i} \in[0,1]$ for each $i \in X$ such that $\sum p_{i}=1$.
- The mean closeness of $i \in X$ is

$$
\sum_{j} e^{-d_{i j}} p_{j}=(Z p)_{i}
$$

This is a measure of the amount of stuff near i.

Diversity measures (preliminaries)

Definition

- A probability metric space is a finite metric space X with $p_{i} \in[0,1]$ for each $i \in X$ such that $\sum p_{i}=1$.
- The mean closeness of $i \in X$ is

$$
\sum_{j} e^{-d_{i j}} p_{j}=(Z p)_{i}
$$

This is a measure of the amount of stuff near i.

- A surprise function is a decreasing function $\sigma:[0,1] \rightarrow[0, \infty]$ with $\sigma(1)=0$.

Diversity measures (preliminaries)

Definition

- A probability metric space is a finite metric space X with $p_{i} \in[0,1]$ for each $i \in X$ such that $\sum p_{i}=1$.
- The mean closeness of $i \in X$ is

$$
\sum_{j} e^{-d_{i j}} p_{j}=(Z p)_{i}
$$

This is a measure of the amount of stuff near i.

- A surprise function is a decreasing function $\sigma:[0,1] \rightarrow[0, \infty]$ with $\sigma(1)=0$.

Example

There is a useful family σ_{α} of surprise functions.

$$
\sigma_{\alpha}(p):=\frac{1-p^{\alpha-1}}{\alpha-1} \quad \alpha \in[0, \infty)
$$

Diversity measures (definition)

Definition

If (X, p) is a probability metric space then the α-diversity (or expected α-surprise) is

$$
D_{\alpha}(X, p):=\sum p_{i} \sigma_{\alpha}\left((Z p)_{i}\right) .
$$

Diversity measures (definition)

Definition

If (X, p) is a probability metric space then the α-diversity (or expected α-surprise) is

$$
D_{\alpha}(X, p):=\sum p_{i} \sigma_{\alpha}\left((Z p)_{i}\right) .
$$

The α-cardinality $|(X, p)|_{\alpha}$ is the 'number' of distinct equi-probable species that would give the same expected α-surprise.

Diversity measures (definition)

Definition

If (X, p) is a probability metric space then the α-diversity (or expected α-surprise) is

$$
D_{\alpha}(X, p):=\sum p_{i} \sigma_{\alpha}\left((Z p)_{i}\right) .
$$

The α-cardinality $|(X, p)|_{\alpha}$ is the 'number' of distinct equi-probable species that would give the same expected α-surprise.

Example

$$
\begin{array}{rlrl}
|(X, p)|_{0}=\sum \frac{p_{i}}{(Z p)_{i}} & |(X, p)|_{1} & =\frac{1}{\prod(Z p)_{i}^{p_{i}}} \\
|(X, p)|_{2} & =\frac{1}{p^{\top} Z p} & |(X, p)|_{\infty} & =\frac{1}{\max \left\{(Z p)_{i}\right\}}
\end{array}
$$

Diversity measures and cardinality

Note

In the case of a discrete space (all the points infinitely far apart), for all α the α-cardinality is maximized by the uniform probability and takes value n.

Diversity measures and cardinality

Note

In the case of a discrete space (all the points infinitely far apart), for all α the α-cardinality is maximized by the uniform probability and takes value n.

Theorem

If X is a finite metric space with a positive weighting w, then $\bar{p}_{i}:=\frac{w_{i}}{|X|}$ is a probability measure and

$$
|(X, \bar{p})|_{\alpha}=|X| \quad \text { for all } \alpha .
$$

Diversity measures and cardinality

Note

In the case of a discrete space (all the points infinitely far apart), for all α the α-cardinality is maximized by the uniform probability and takes value n.

Theorem

If X is a finite metric space with a positive weighting w, then $\bar{p}_{i}:=\frac{w_{i}}{|X|}$ is a probability measure and

$$
|(X, \bar{p})|_{\alpha}=|X| \quad \text { for all } \alpha .
$$

In many cases $|X|$ maximizes the cardinality.

Diversity measures and cardinality

Note

In the case of a discrete space (all the points infinitely far apart), for all α the α-cardinality is maximized by the uniform probability and takes value n.

Theorem

If X is a finite metric space with a positive weighting w, then $\bar{p}_{i}:=\frac{w_{i}}{|X|}$ is a probability measure and

$$
|(X, \bar{p})|_{\alpha}=|X| \quad \text { for all } \alpha .
$$

In many cases $|X|$ maximizes the cardinality.
So it looks like a weighting on a metric space is analogous to the uniform distribution on a set of points.

3: Cardinality and continuous metric spaces

Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Example

Let L_{a} be a line segment of length a.

Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Example

Let L_{a} be a line segment of length a.
Approximate by a set of points: take $\sum_{1}^{n-1} d_{i}=a$ and let X_{d} be

$$
\begin{gathered}
\bullet \stackrel{d_{1}}{\longleftrightarrow} \bullet \stackrel{d_{2}}{\longleftrightarrow} \bullet \ldots \bullet \stackrel{d_{n-1}}{\longleftrightarrow} \bullet \\
\left|X_{d}\right|=\left(\sum \tanh d_{i}\right)+1
\end{gathered}
$$

Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Example

Let L_{a} be a line segment of length a.
Approximate by a set of points: take $\sum_{1}^{n-1} d_{i}=a$ and let X_{d} be

$$
\begin{gathered}
\bullet \stackrel{d_{1}}{\longleftrightarrow} \bullet \stackrel{d_{2}}{\longleftrightarrow} \bullet \ldots \bullet \stackrel{d_{n-1}}{\longleftrightarrow} \bullet \\
\left|X_{d}\right|=\left(\sum \tanh d_{i}\right)+1 \rightarrow a+1 \quad \text { as } \max \left\{d_{i}\right\} \rightarrow 0 .
\end{gathered}
$$

Approximating continuous metric spaces

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Example

Let L_{a} be a line segment of length a.
Approximate by a set of points: take $\sum_{1}^{n-1} d_{i}=a$ and let X_{d} be

$$
\begin{gathered}
\bullet \stackrel{d_{1}}{\longleftrightarrow} \bullet \stackrel{d_{2}}{\longleftrightarrow} \bullet \ldots \bullet \stackrel{d_{n-1}}{\longleftrightarrow} \bullet \\
\left|X_{d}\right|=\left(\sum \tanh d_{i}\right)+1 \rightarrow a+1 \quad \text { as } \max \left\{d_{i}\right\} \rightarrow 0 .
\end{gathered}
$$

So we can define the cardinality of the length a line segment

$$
\left|L_{a}\right|=a+1
$$

Approximating the circle

Let C_{a} be the circle of circumference a (with the metric induced from \mathbb{R}^{2}).

Approximating the circle

Let C_{a} be the circle of circumference a (with the metric induced from \mathbb{R}^{2}). Approximate by a symmetric set of points:

Approximating the circle

Let C_{a} be the circle of circumference a (with the metric induced from \mathbb{R}^{2}). Approximate by a symmetric set of points:

Find that as the number of points tends to infinity we can define

$$
\left|C_{a}\right|=\frac{1}{\int_{0}^{1} e^{-2 a D(s)} d s}
$$

Approximating the circle

Let C_{a} be the circle of circumference a (with the metric induced from \mathbb{R}^{2}). Approximate by a symmetric set of points:

Find that as the number of points tends to infinity we can define

$$
\left|C_{a}\right|=\frac{1}{\int_{0}^{1} e^{-2 a D(s)} d s}
$$

$$
\begin{gathered}
\left|C_{a}\right| \rightarrow 1 \quad \text { as } a \rightarrow 0 \\
\left|C_{a}\right|-a \rightarrow 0 \quad \text { as } a \rightarrow \infty
\end{gathered}
$$

Intrinsic volume

Definition

An invariant valuation μ on (polyconvex) subsets of \mathbb{R}^{m} is a (continuous, motion invariant) \mathbb{R}-valued function such that

- $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Intrinsic volume

Definition

An invariant valuation μ on (polyconvex) subsets of \mathbb{R}^{m} is a (continuous, motion invariant) \mathbb{R}-valued function such that

- $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Theorem (Hadwiger's Theorem)
There is a canonical basis $\left\{\mu_{m}, \ldots, \mu_{0}\right\}$ of invariant valuations on subsets of \mathbb{R}^{m} and these have the scaling property $\mu_{i}(t A)=t^{i} \mu_{i}(A)$.

Intrinsic volume

Definition

An invariant valuation μ on (polyconvex) subsets of \mathbb{R}^{m} is a (continuous, motion invariant) \mathbb{R}-valued function such that

- $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Theorem (Hadwiger's Theorem)

There is a canonical basis $\left\{\mu_{m}, \ldots, \mu_{0}\right\}$ of invariant valuations on subsets of \mathbb{R}^{m} and these have the scaling property $\mu_{i}(t A)=t^{i} \mu_{i}(A)$.

Example

- $\mu_{m}=$ usual (Lebesgue) volume
- $\mu_{m-1}=\frac{1}{2}$ "surface area"
- $\mu_{0}=$ Euler characteristic

Intrinsic volume

Definition

An invariant valuation μ on (polyconvex) subsets of \mathbb{R}^{m} is a (continuous, motion invariant) \mathbb{R}-valued function such that

- $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Theorem (Hadwiger's Theorem)

There is a canonical basis $\left\{\mu_{m}, \ldots, \mu_{0}\right\}$ of invariant valuations on subsets of \mathbb{R}^{m} and these have the scaling property $\mu_{i}(t A)=t^{i} \mu_{i}(A)$.

Example

- $\mu_{m}=$ usual (Lebesgue) volume
- $\mu_{m-1}=\frac{1}{2}$ "surface area"
- $\mu_{0}=$ Euler characteristic

Theorem

The Wills function $W(A):=\mu_{m}(A)+\mu_{m-1}(A)+\cdots+\mu_{0}(A)$ is multiplicative: $W(A \times B)=W(A) \times W(B)$.

Asymptotic conjecture

A	$W(A)$	
finite collection of points	\ddots	(number of points)
closed interval	-	(length) +1
polygon	\square	(perimeter)
filled polygon		(area) $+\frac{1}{2}$ (perimeter) +1
unit ball in \mathbb{R}^{3}		$\frac{4}{3} \pi+2 \pi+4+1$

Asymptotic conjecture

A		$W(A)$
finite collection of points	\ddots	(number of points)
closed interval	\ddots	(length) +1
polygon		(perimeter)
filled polygon		(area) $+\frac{1}{2}$ (perimeter) +1
unit ball in \mathbb{R}^{3}		$\frac{4}{3} \pi+2 \pi+4+1$

Conjecture

The cardinality can be defined for any compact subset of \mathbb{R}^{n} and

$$
|t A|-W(t A) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

