# Measuring metric spaces: short sightedness and population diversity

Simon Willerton

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

1: Defining the cardinality

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

How many things are there?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How many things are there?



٠

:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How many things are there?

How many things are there?

We want to measure the 'size' of a set of points with distances.

٠

:

How many things are there?

We want to measure the 'size' of a set of points with distances.



:

How many things are there?

We want to measure the 'size' of a set of points with distances.



### Definition

A metric space is a set X with a 'distance'  $d_{ij} \in [0, \infty]$  between each pair of points  $i, j \in X$  such that

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- triangle inequality:  $d_{ik} \leq d_{ij} + d_{jk}$
- no self-distance:  $d_{ii} = 0$  for all  $i \in X$
- separation: if  $i \neq j$  then  $d_{ij} \neq 0$
- symmetry:  $d_{ij} = d_{ji}$

### Definition

A metric space is a set X with a 'distance'  $d_{ij} \in [0, \infty]$  between each pair of points  $i, j \in X$  such that

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- triangle inequality:  $d_{ik} \leq d_{ij} + d_{jk}$
- no self-distance:  $d_{ii} = 0$  for all  $i \in X$
- separation: if  $i \neq j$  then  $d_{ij} \neq 0$
- ▶ symmetry: d<sub>ij</sub> = d<sub>ji</sub>

### Example

Euclidean distances between points

### Definition

A metric space is a set X with a 'distance'  $d_{ij} \in [0, \infty]$  between each pair of points  $i, j \in X$  such that

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- triangle inequality:  $d_{ik} \leq d_{ij} + d_{jk}$
- no self-distance:  $d_{ii} = 0$  for all  $i \in X$
- separation: if  $i \neq j$  then  $d_{ij} \neq 0$
- symmetry:  $d_{ij} = d_{ji}$

### Example

- Euclidean distances between points
- 'Difference' between species in a population

### Definition

A metric space is a set X with a 'distance'  $d_{ij} \in [0, \infty]$  between each pair of points  $i, j \in X$  such that

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- triangle inequality:  $d_{ik} \leq d_{ij} + d_{jk}$
- no self-distance:  $d_{ii} = 0$  for all  $i \in X$
- separation: if  $i \neq j$  then  $d_{ij} \neq 0$
- symmetry:  $d_{ij} = d_{ji}$

### Example

- Euclidean distances between points
- 'Difference' between species in a population
- Distance in an evolutionary tree

### Definition

A metric space is a set X with a 'distance'  $d_{ij} \in [0, \infty]$  between each pair of points  $i, j \in X$  such that

- triangle inequality:  $d_{ik} \leq d_{ij} + d_{jk}$
- no self-distance:  $d_{ii} = 0$  for all  $i \in X$
- separation: if  $i \neq j$  then  $d_{ij} \neq 0$
- symmetry:  $d_{ij} = d_{ji}$

#### Note

Not every metric space is embeddable in Euclidean space.

Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

- 1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]
- 2. Invert Z (if possible).

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

- 1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]
- 2. Invert Z (if possible).
- 3. Define |X| as the sum of the entries of  $Z^{-1}$ .

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

- 1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]
- 2. Invert Z (if possible).
- 3. Define |X| as the sum of the entries of  $Z^{-1}$ .
- For  $t \in (0, \infty)$  let tX be X scaled by a factor of t.

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

- 1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]
- 2. Invert Z (if possible).
- 3. Define |X| as the sum of the entries of  $Z^{-1}$ .

For  $t \in (0, \infty)$  let tX be X scaled by a factor of t. Define the cardinality function of X to be |tX|.

### Definition

If X is a finite metric space then (try to) define the cardinality |X| as follows.

- 1. Define the closeness (or similarity) matrix Z by  $Z_{ij} := e^{-d_{ij}}$ . [Z is symmetric with entries in [0, 1] and 1s on the diagonal.]
- 2. Invert Z (if possible).
- 3. Define |X| as the sum of the entries of  $Z^{-1}$ .

For  $t \in (0, \infty)$  let tX be X scaled by a factor of t. Define the cardinality function of X to be |tX|.

### Example





Conjecture

• Every finite metric space has a cardinality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

### Conjecture

• Every finite metric space has a cardinality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\blacktriangleright$  |*tX*| is an increasing function of *t*.

### Conjecture

Every finite metric space has a cardinality.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .

### Conjecture

- Every finite metric space has a cardinality.
- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .
- If all distances are finite then  $|tX| \rightarrow 1$  as  $t \rightarrow 0$ .

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

### Conjecture

- Every finite metric space has a cardinality.
- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .
- If all distances are finite then  $|tX| \rightarrow 1$  as  $t \rightarrow 0$ .

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

• If X has n points then  $|tX| \rightarrow n$  as  $t \rightarrow \infty$ .

Conjecture

- Every finite metric space has a cardinality.
- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .
- If all distances are finite then  $|tX| \rightarrow 1$  as  $t \rightarrow 0$ .
- If X has n points then  $|tX| \rightarrow n$  as  $t \rightarrow \infty$ .



### Conjecture

- Every finite metric space has a cardinality.
- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .
- If all distances are finite then  $|tX| \rightarrow 1$  as  $t \rightarrow 0$ .
- If X has n points then  $|tX| \rightarrow n$  as  $t \rightarrow \infty$ .



### Conjecture

- Every finite metric space has a cardinality.
- $\blacktriangleright$  |*tX*| is an increasing function of *t*.
- If X has n points then  $1 \le |X| \le n$ .
- If all distances are finite then  $|tX| \rightarrow 1$  as  $t \rightarrow 0$ .
- If X has n points then  $|tX| \rightarrow n$  as  $t \rightarrow \infty$ .

#### Theorem

For any X with n points there exists a  $t_0$  such that for  $t > t_0$  the cardinality |tX| exists, is increasing and tends to n as  $t \to \infty$ .

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

٠

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

If X has a weighting w then define  $|X| := \sum_i w_i$ .

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

If X has a weighting w then define  $|X| := \sum_i w_i$ .

#### Theorem

If a weighting exists then it is unique.

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

If X has a weighting w then define  $|X| := \sum_i w_i$ .

#### Theorem

- If a weighting exists then it is unique.
- If Z is invertible then  $w_i := \sum_j (Z^{-1})_{ij}$  is a weighting.

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

If X has a weighting w then define  $|X| := \sum_i w_i$ .

#### Theorem

- If a weighting exists then it is unique.
- If Z is invertible then  $w_i := \sum_j (Z^{-1})_{ij}$  is a weighting.

### Definition

Given a finite metric space *X*, a weighting on *X* is a number  $w_i \in \mathbb{R}$  for each point  $i \in X$  such that

$$\sum_{j \in X} e^{-d_{ij}} w_i = 1 \quad \text{for all } i \in X, \qquad \text{i.e.} \quad Zw = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

If X has a weighting w then define  $|X| := \sum_i w_i$ .

#### Theorem

- If a weighting exists then it is unique.
- If Z is invertible then  $w_i := \sum_i (Z^{-1})_{ij}$  is a weighting.

#### Note

The weights do not have to be positive!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Definition

A probability metric space is a finite metric space X with p<sub>i</sub> ∈ [0, 1] for each i ∈ X such that ∑ p<sub>i</sub> = 1.

### Definition

- A probability metric space is a finite metric space X with p<sub>i</sub> ∈ [0, 1] for each i ∈ X such that ∑p<sub>i</sub> = 1.
- The mean closeness of  $i \in X$  is

$$\sum\nolimits_{j} e^{-d_{ij}} p_j = (Zp)_i.$$

うして ふぼう ふほう ふほう ふしつ

This is a measure of the amount of stuff near *i*.

### Definition

- A probability metric space is a finite metric space X with p<sub>i</sub> ∈ [0, 1] for each i ∈ X such that ∑ p<sub>i</sub> = 1.
- The mean closeness of  $i \in X$  is

$$\sum\nolimits_{j} e^{-d_{ij}} p_j = (Zp)_i.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

This is a measure of the amount of stuff near *i*.

► A surprise function is a decreasing function  $\sigma$ :  $[0, 1] \rightarrow [0, \infty]$  with  $\sigma(1) = 0$ .

### Definition

- A probability metric space is a finite metric space X with p<sub>i</sub> ∈ [0, 1] for each i ∈ X such that ∑ p<sub>i</sub> = 1.
- The mean closeness of  $i \in X$  is

$$\sum_{j}e^{-d_{ij}}p_j=(Zp)_i.$$

This is a measure of the amount of stuff near *i*.

► A surprise function is a decreasing function  $\sigma$ :  $[0, 1] \rightarrow [0, \infty]$  with  $\sigma(1) = 0$ .



#### Example

There is a useful family  $\sigma_{\alpha}$  of surprise functions.

$$\sigma_{lpha}(oldsymbol{p}):=rac{1-oldsymbol{p}^{lpha-1}}{lpha-1}\qquad lpha\in [0,\infty)$$

・ロト・西ト・ヨト・ヨト・ 日・ うらう

## Diversity measures (definition)

Definition

If (X, p) is a probability metric space then the  $\alpha$ -diversity (or expected  $\alpha$ -surprise) is

$$D_{\alpha}(X,p) := \sum p_i \sigma_{\alpha}((Zp)_i).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

## Diversity measures (definition)

### Definition

If (X, p) is a probability metric space then the  $\alpha$ -diversity (or expected  $\alpha$ -surprise) is

$$D_{\alpha}(X,p) := \sum p_i \sigma_{\alpha}((Zp)_i).$$

The  $\alpha$ -cardinality  $|(X, p)|_{\alpha}$  is the 'number' of distinct equi-probable species that would give the same expected  $\alpha$ -surprise.

## Diversity measures (definition)

### Definition

If (X, p) is a probability metric space then the  $\alpha$ -diversity (or expected  $\alpha$ -surprise) is

$$D_{\alpha}(X,p) := \sum p_i \sigma_{\alpha}((Zp)_i).$$

The  $\alpha$ -cardinality  $|(X, p)|_{\alpha}$  is the 'number' of distinct equi-probable species that would give the same expected  $\alpha$ -surprise.

### Example

$$|(X,p)|_{0} = \sum \frac{p_{i}}{(Zp)_{i}} \qquad |(X,p)|_{1} = \frac{1}{\prod (Zp)_{i}^{p_{i}}} \\ |(X,p)|_{2} = \frac{1}{p^{T}Zp} \qquad |(X,p)|_{\infty} = \frac{1}{\max\{(Zp)_{i}\}}$$

・ロト・西・・田・・田・・日・

#### Note

In the case of a discrete space (all the points infinitely far apart), for all  $\alpha$  the  $\alpha$ -cardinality is maximized by the uniform probability and takes value *n*.

#### Note

In the case of a discrete space (all the points infinitely far apart), for all  $\alpha$  the  $\alpha$ -cardinality is maximized by the uniform probability and takes value *n*.

#### Theorem

If X is a finite metric space with a positive weighting w, then  $\overline{p}_i := \frac{w_i}{|X|}$  is a probability measure and

$$|(X,\overline{p})|_{\alpha} = |X|$$
 for all  $\alpha$ .

うして ふぼう ふほう ふほう ふしつ

#### Note

In the case of a discrete space (all the points infinitely far apart), for all  $\alpha$  the  $\alpha$ -cardinality is maximized by the uniform probability and takes value *n*.

#### Theorem

If X is a finite metric space with a positive weighting w, then  $\overline{p}_i := \frac{w_i}{|X|}$  is a probability measure and

$$|(X,\overline{p})|_{\alpha} = |X|$$
 for all  $\alpha$ .

うして ふぼう ふほう ふほう ふしつ

In many cases |X| maximizes the cardinality.

#### Note

In the case of a discrete space (all the points infinitely far apart), for all  $\alpha$  the  $\alpha$ -cardinality is maximized by the uniform probability and takes value *n*.

#### Theorem

If X is a finite metric space with a positive weighting w, then  $\overline{p}_i := \frac{w_i}{|X|}$  is a probability measure and

$$|(X,\overline{p})|_{\alpha} = |X|$$
 for all  $\alpha$ .

In many cases |X| maximizes the cardinality.

So it looks like a weighting on a metric space is analogous to the uniform distribution on a set of points.

3: Cardinality and continuous metric spaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

### Example

Let  $L_a$  be a line segment of length a.



Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

### Example

Let  $L_a$  be a line segment of length a.

Approximate by a set of points: take  $\sum_{1}^{n-1} d_i = a$  and let  $X_d$  be

$$\bullet \stackrel{d_1}{\longleftrightarrow} \bullet \stackrel{d_2}{\longleftrightarrow} \bullet \dots \bullet \stackrel{d_{n-1}}{\longleftrightarrow} \bullet$$
$$|X_d| = \left(\sum \tanh d_i\right) + 1$$

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

### Example

Let  $L_a$  be a line segment of length a.

Approximate by a set of points: take  $\sum_{1}^{n-1} d_i = a$  and let  $X_d$  be

$$\bullet \xleftarrow{d_1} \bullet \xleftarrow{d_2} \bullet \dots \bullet \xleftarrow{d_{n-1}} \bullet$$
$$|X_d| = \left(\sum \tanh d_i\right) + 1 \to a + 1 \quad \text{as max}\{d_i\} \to 0.$$

Try to define the cardinality of a nice subset of Euclidean space by approximating with a finite set of points.

### Example

Let  $L_a$  be a line segment of length a.

Approximate by a set of points: take  $\sum_{1}^{n-1} d_i = a$  and let  $X_d$  be

$$\bullet \xleftarrow{d_1} \bullet \xleftarrow{d_2} \bullet \dots \bullet \xleftarrow{d_{n-1}} \bullet$$
$$|X_d| = \left(\sum \tanh d_i\right) + 1 \to a + 1 \quad \text{as max}\{d_i\} \to 0.$$

So we can define the cardinality of the length a line segment

$$|L_a| = a + 1$$

Let  $C_a$  be the circle of circumference *a* (with the metric induced from  $\mathbb{R}^2$ ).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let  $C_a$  be the circle of circumference *a* (with the metric induced from  $\mathbb{R}^2$ ). Approximate by a symmetric set of points:



▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Let  $C_a$  be the circle of circumference *a* (with the metric induced from  $\mathbb{R}^2$ ). Approximate by a symmetric set of points:



Find that as the number of points tends to infinity we can define

$$|C_a| = \frac{1}{\int_0^1 e^{-2aD(s)} ds}$$

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Let  $C_a$  be the circle of circumference *a* (with the metric induced from  $\mathbb{R}^2$ ). Approximate by a symmetric set of points:



Find that as the number of points tends to infinity we can define

$$|C_a| = \frac{1}{\int_0^1 e^{-2aD(s)} ds}$$



$$|C_a| 
ightarrow 1$$
 as  $a 
ightarrow 0$   
 $|C_a| - a 
ightarrow 0$  as  $a 
ightarrow \infty$ 

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

### Definition

An invariant valuation  $\mu$  on (polyconvex) subsets of  $\mathbb{R}^m$  is a (continuous, motion invariant)  $\mathbb{R}$ -valued function such that

► 
$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$
.

### Definition

An invariant valuation  $\mu$  on (polyconvex) subsets of  $\mathbb{R}^m$  is a (continuous, motion invariant)  $\mathbb{R}$ -valued function such that

$$\blacktriangleright \ \mu(\mathbf{A} \cup \mathbf{B}) = \mu(\mathbf{A}) + \mu(\mathbf{B}) - \mu(\mathbf{A} \cap \mathbf{B}).$$

### Theorem (Hadwiger's Theorem)

There is a canonical basis  $\{\mu_m, \ldots, \mu_0\}$  of invariant valuations on subsets of  $\mathbb{R}^m$  and these have the scaling property  $\mu_i(tA) = t^i \mu_i(A)$ .

### Definition

An invariant valuation  $\mu$  on (polyconvex) subsets of  $\mathbb{R}^m$  is a (continuous, motion invariant)  $\mathbb{R}$ -valued function such that

$$\blacktriangleright \ \mu(\mathbf{A} \cup \mathbf{B}) = \mu(\mathbf{A}) + \mu(\mathbf{B}) - \mu(\mathbf{A} \cap \mathbf{B}).$$

### Theorem (Hadwiger's Theorem)

There is a canonical basis  $\{\mu_m, \ldots, \mu_0\}$  of invariant valuations on subsets of  $\mathbb{R}^m$  and these have the scaling property  $\mu_i(tA) = t^i \mu_i(A)$ .

うして ふぼう ふほう ふほう ふしつ

### Example

- $\mu_m$  = usual (Lebesgue) volume
- $\mu_{m-1} = \frac{1}{2}$  "surface area"
- $\mu_0 = \text{Euler characteristic}$

### Definition

An invariant valuation  $\mu$  on (polyconvex) subsets of  $\mathbb{R}^m$  is a (continuous, motion invariant)  $\mathbb{R}$ -valued function such that

$$\blacktriangleright \ \mu(\mathbf{A} \cup \mathbf{B}) = \mu(\mathbf{A}) + \mu(\mathbf{B}) - \mu(\mathbf{A} \cap \mathbf{B}).$$

### Theorem (Hadwiger's Theorem)

There is a canonical basis  $\{\mu_m, \ldots, \mu_0\}$  of invariant valuations on subsets of  $\mathbb{R}^m$  and these have the scaling property  $\mu_i(tA) = t^i \mu_i(A)$ .

### Example

- $\mu_m$  = usual (Lebesgue) volume
- $\mu_{m-1} = \frac{1}{2}$  "surface area"
- $\mu_0 = \text{Euler characteristic}$

#### Theorem

The Wills function  $W(A) := \mu_m(A) + \mu_{m-1}(A) + \cdots + \mu_0(A)$ is multiplicative:  $W(A \times B) = W(A) \times W(B)$ .

## Asymptotic conjecture

| A                           |                                       | W(A)                                  |
|-----------------------------|---------------------------------------|---------------------------------------|
| finite collection of points | · · · · · · · · · · · · · · · · · · · | (number of points)                    |
| closed interval             | /                                     | (length) + 1                          |
| polygon                     |                                       | (perimeter)                           |
| filled polygon              |                                       | $(area) + \frac{1}{2}(perimeter) + 1$ |
| unit ball in $\mathbb{R}^3$ |                                       | $\frac{4}{3}\pi + 2\pi + 4 + 1$       |

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

## Asymptotic conjecture

| A                           |                                       | W(A)                                  |
|-----------------------------|---------------------------------------|---------------------------------------|
| finite collection of points | · · · · · · · · · · · · · · · · · · · | (number of points)                    |
| closed interval             | /                                     | (length) + 1                          |
| polygon                     |                                       | (perimeter)                           |
| filled polygon              |                                       | $(area) + \frac{1}{2}(perimeter) + 1$ |
| unit ball in $\mathbb{R}^3$ |                                       | $\frac{4}{3}\pi + 2\pi + 4 + 1$       |

#### Conjecture

The cardinality can be defined for any compact subset of  $\mathbb{R}^n$  and

$$|tA| - W(tA) \rightarrow 0$$
 as  $t \rightarrow \infty$ 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●