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If Ais an infinite metric space define

|A] = sup{’A} cACA finite}

For example

\ |=t/2+1

Theorem (Leinster et al.): If A C R™ is finite then |A| exists.

Theorem (Meckes): Suppose A C R™. )
If {A;} is a sequence of finite subsets of A with A; — A then |A;| — |A|.
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The valuation P

Define the valuation P of compact subset A C R

=LA A A A
Py =y A _ R = AR}
— twi m!wm, 21 2

Let A C A mean a finite subset.
Guess.
» For A a reasonable approximation: |A| ~ |Al.
> For A large and closure of an open set: |A| ~ P(A) [bulk approximation].

Test the guess.
Pick some simple subset A in R? or R and a scale factor t > 0.
Calculate P(tA).

v

>
» Get a computer to calculate |tA| for an approximation A.
» Compare the two!
>

Repeat.
6/12



Some calculations
Squares: Discs:

oY
00
QO
Q0
0Q0 ¢
00
00
000 g
00
00
00,

7/12



Some calculations
Squares:

22500
10000

1000

100

0.1 1 10 100 1000

1000

Discs:
25132
10000

1000

100

10

Annuli:

23600
10000

1000

1000

1000

7/12



Fractals: Ternary Cantor sets
0=

8/12



Fractals: Ternary Cantor sets

8/12



Fractals: Ternary Cantor sets
T? =

8/12



Fractals: Ternary Cantor sets
T3 =

8/12



Fractals: Ternary Cantor sets
T3 =

(
The length £ ternary Cantor set is the limit of these sets:

8/12



Fractals: Ternary Cantor sets
T3 =

(
The length { ternary Cantor set is the limit of these sets: Tek — T

8/12



Fractals: Ternary Cantor sets
T3 =

{
The length { ternary Cantor set is the limit of these sets: Tek — T
It is easy to calculate the magnitudes of the approximations:

; ( (
ITE| =1+ Zz tanh<2 3>+2ktanh<2 3k>

8/12



Fractals: Ternary Cantor sets
T3 =

{
The length { ternary Cantor set is the limit of these sets: Tek — T
It is easy to calculate the magnitudes of the approximations:

k 1 - i ¢
\Te}—>1+2;2 tanh (2.3,.)

8/12



Fractals: Ternary Cantor sets
T3 =

{
The length { ternary Cantor set is the limit of these sets: Tek — T
It is easy to calculate the magnitudes of the approximations:

l & 0
\Te}:1+2;2 tanh(2‘3i>

8/12



Fractals: Ternary Cantor sets
T3 =

{
The length { ternary Cantor set is the limit of these sets: Tek — T
It is easy to calculate the magnitudes of the approximations:

‘Te} — f(e)-€'°g32+0(€*1) as { — oo

(where f(3¢) = f({) and f({) ~ 1.205.)

8/12



Fractals: Ternary Cantor sets
T3 =

{
The length { ternary Cantor set is the limit of these sets: Tek — T
It is easy to calculate the magnitudes of the approximations:

[T | = F(0)- €822 + O(t™")  asl— oo

(where f(3¢) = f({) and f({) ~ 1.205.)

Lemma: Suppse p is a function on { Ty} then p satisfies the inclusion-exclusion
principle if and only if
p(Te) = F(L) - 822

for some f: (0,00) — R with f(3¢) = f({).
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Convex Conjecture: If K € R™ is a convex set then

K| = P(K).

Asymptotic Principle: There is a large class € of compact subsets of Euclidean
space and a function p: € — R which is tractable and interesting, possibly
related to valuations, such that for A € C

[tA| ~ p(tA) as t — oo.

For example

v

finite sets of points [p = cardinality = P]

» circles [p = half the circumference = P]

» finite unions of intervals in the line [p = P]

» Cantor sets [p(T;) = f({) - £'°832]

Guess: For A the closure of an open set p(A) = P(A).
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J e dabldy, =1 for all a € A.
beA

If a weight measure v exists then the measure magnitude is defined by

I|A|l ::J dv.
A
Eg: For Ly := a weight measure is %(u—i—&o + d¢).
[/
Hence
|ILe|| = /2 + 1.

Theorem (Meckes): If AC R™ and ||A|| exists then ||A]| = |A|.
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There is weight measure v on A: for any fixed a € A

Jadu
Tocne TP1di

_ [
«[bEA efd(a,b)dp'b

v so I|A| =

Suppose X is a homogeneous Riemannian manifold.

» It has the geodesic metric.

» It has an invariant measure from the volume form.
So

vol(X)
X|| = .
IXI [y edlab)dvol,
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1—e 7R
1 I R

for n even

for n odd

12/12



Homogeneous manifolds: spheres

Suppose Sg is the radius R sphere with the geodesic metric.

ay_ Hn(SR) (n+1)] wn—2(SR)
ISRl = =7 + 0+ {3(,7_1)} (n—22)!ufn,2 + 0+ -
+O0(R™)
1 "R

+X(SR)

as R — oo.
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Homogeneous manifolds: asymptotics

Suppose X" is a homogeneous Riemannian manifold, t > 0.

vol(tX)
[y e~td(ab)dvol,

[tX]| =
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Homogeneous manifolds: asymptotics

Suppose X" is a homogeneous Riemannian manifold, t > 0.

Hn(tX) (n+1)  pao(tX)
n'wp 3n—1)(n—2)'w,_2

tX|| = + O(t"*), ast— oo.
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Homogeneous manifolds: asymptotics

Suppose X" is a homogeneous Riemannian manifold, t > 0.

Hn(tX) (n+1)  pp2(tX)

tX|| =
Xl n!w, 3n—1) (n—2)wp_»

+ O(t"™*), ast— co.

Key points:

> The scalar curvature T(x) measures the lack of ‘stuff’ near x.

> pp—2(X) = 7= [ T(x) dvol

For example
Suppose X is a homogeneous Riemannian 2-sphere or 2-torus

Area(tX)

ti|| =
e = =52

+x(tZ)+0(t72)  ast— oo.
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