
Magnitude of Metric Spaces II

Tom Leinster & Simon Willerton
Universities of Glasgow & Sheffield

Integral Geometry and Valuation Theory, CRM Barcelona
8th September 2010



Weighting and magnitude
Recall:

I Suppose A is a finite metric space.

I A weighting is a function w : A→ R such that∑
b∈A

e−d(a,b)wb = 1 for all a ∈ A.

I If a weighting exists then the magnitude is given by

|A| :=
∑
a

wa.

Think: Each a ∈ A

I is an organism;

I wishes to be at temperature 1;

I generates wa amount of heat;

I experiences heat from b as
e−d(a,b)wb.
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Recall: Infinite spaces and intervals

If A is an infinite metric space define

|A| := sup
{∣∣Ä∣∣ : Ä ⊂ A finite

}

For example ∣∣
`

∣∣ = `/2 + 1

Theorem (Leinster et al.): If Ä ⊂ Rm is finite then |Ä| exists.

Theorem (Meckes): Suppose A ⊂ Rm.
If {Äi } is a sequence of finite subsets of A with Äi → A then |Ai |→ |A|.
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Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed a0 ∈ A

w :=
1∑

a∈A
e−d(a0,a)

so |A| =
#A∑

a∈A
e−d(a0,a)

For example

|Cn
` |

→ `/2∫1
0 e

−`d(s)ds
[n→∞]

So
∣∣S1
`

∣∣

=

`/2∫1
0 e

−`d(s)ds

∼ `/2 +O(`−2) [`→∞]

Cn
` :=

`
n

points
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Approximating a square

We don’t know how to calculate the magnitude of subsets of R2.

Approximate with a finite subset

4
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Bulk approximation heuristic

Let L be a ‘small’ lattice in Rm.

Homogeneous so has a weighting.

w = ∑
a∈L

e−d(0,a)

vol∆
' vol∆∫

x∈Rm

e−|x |dvol

=
vol∆

m!ωm

Suppose A ⊂ Rm is ‘large’ and the closure of an open subset.
Contribution to |A∩L| due to the ‘bulk’ far from the boundary is ‘roughly’∑

a∈bulk

vol∆

m!ωm

∼
m!ωm
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The valuation P

Define the valuation P of compact subset A ⊂ Rm

P(A) :=
m∑
i=0

µi (A)

i !ωi

=
µmA

m!ωm
+ · · ·+ µ2A

2π
+
µ1A

2
+ χA.

Let Ä ⊂ A mean a finite subset.

Guess.

I For Ä a reasonable approximation: |Ä| ' |A|.

I For A large and closure of an open set: |Ä| ' P(A) [bulk approximation].

Test the guess.

I Pick some simple subset A in R2 or R3 and a scale factor t > 0.

I Calculate P(tA).

I Get a computer to calculate |tÄ| for an approximation Ä.

I Compare the two!

I Repeat.
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I Compare the two!

I Repeat.

6/12



The valuation P

Define the valuation P of compact subset A ⊂ Rm

P(A) :=
m∑
i=0

µi (A)

i !ωi
=

µmA

m!ωm
+ · · ·+ µ2A

2π
+
µ1A

2
+ χA.
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Let Ä ⊂ A mean a finite subset.

Guess.

I For Ä a reasonable approximation: |Ä| ' |A|.
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I Compare the two!

I Repeat.

6/12



The valuation P

Define the valuation P of compact subset A ⊂ Rm

P(A) :=
m∑
i=0

µi (A)

i !ωi
=

µmA

m!ωm
+ · · ·+ µ2A

2π
+
µ1A

2
+ χA.

Let Ä ⊂ A mean a finite subset.

Guess.
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Some calculations
Squares:

Cubes:

Discs:

Annuli:
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Fractals: Ternary Cantor sets

T 0
` :=

`

The length ` ternary Cantor set is the limit of these sets: T k
` → T`

It is easy to calculate the magnitudes of the approximations:

∣∣T

k

`

∣∣

(where f (3`) = f (`) and f (`) ' 1.205.)
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` → T`

It is easy to calculate the magnitudes of the approximations:

∣∣T

k

`

∣∣ = f (`) · `log3 2 + O(`−1) as `→∞
(where f (3`) = f (`) and f (`) ' 1.205.)
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T 0
`

T 3
` :=

`

The length ` ternary Cantor set is the limit of these sets: T k
` → T`

It is easy to calculate the magnitudes of the approximations:

∣∣T

k

`

∣∣ = f (`) · `log3 2 + O(`−1) as `→∞
(where f (3`) = f (`) and f (`) ' 1.205.)

Lemma: Suppse p is a function on {T`} then p satisfies the inclusion-exclusion
principle if and only if

p(T`) = f (`) · `log3 2

for some f : (0,∞)→ R with f (3`) = f (`).
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Euclidean subspaces: summary

Convex Conjecture: If K ∈ Rm is a convex set then

|K | = P(K ).

Asymptotic Principle: There is a large class C of compact subsets of Euclidean
space and a function p : C→ R which is tractable and interesting, possibly
related to valuations, such that for A ∈ C

|tA| ' p(tA) as t →∞.

For example

I finite sets of points [p = cardinality = P]

I circles [p = half the circumference = P]

I finite unions of intervals in the line [p = P]

I Cantor sets [p(T`) = f (`) · `log3 2]

Guess: For A the closure of an open set p(A) = P(A).
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Measure theoretic approach

A weight measure for A is a signed measure ν such that that∫
b∈A

e−d(a,b)dνb = 1 for all a ∈ A.

If a weight measure ν exists then the measure magnitude is defined by

‖A‖ :=
∫
A

dν.

Eg: For L` :=

`

a weight measure is 1
2(µ+ δ0 + δ`).

Hence

‖L`‖ =

∫
L`

1
2(dµ+ dδ0 + dδ`)

Theorem (Meckes): If A ⊂ Rm and ‖A‖ exists then ‖A‖ = |A|.
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Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and µ an invariant measure.
There is weight measure ν on A: for any fixed a ∈ A

ν :=
µ∫

b∈A e−d(a,b)dµb

so ‖A‖ =
∫
A dµ∫

b∈A e−d(a,b)dµb
.

Suppose X is a homogeneous Riemannian manifold.

I It has the geodesic metric.

I It has an invariant measure from the volume form.

So

‖X‖ = vol(X )∫
X e−d(a,b)dvolb

.
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Homogeneous manifolds: spheres
Suppose Sn

R is the radius R sphere with the geodesic metric.

‖Sn
R‖ =
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((

R
n−1

)2
+ 1

)((
R
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. . .

((
R
1
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)
1 + e−πR

for n even

πR
((

R
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)2
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)((
R

n−3

)2
+ 1

)
. . .

((
R
2

)2
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for n odd
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Homogeneous manifolds: spheres
Suppose Sn

R is the radius R sphere with the geodesic metric.

‖Sn
R‖ =

µn
(
Sn
R

)
n!ωn

+ 0 +

[
(n+ 1)

3(n− 1)

]
µn−2

(
Sn
R

)
(n− 2)!ωn−2

+ 0 + · · · + χ
(
Sn
R

)
+O(R−1) as R →∞.

0 1 2 3

1 R
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Homogeneous manifolds: asymptotics

Suppose X n is a homogeneous Riemannian manifold, t > 0.

‖tX‖ = vol(tX )∫
X e−td(a,b)dvolb

µn(tX )

n!ωn
+

(n+ 1)

3(n− 1)

µn−2(tX )

(n− 2)!ωn−2
+ O(tn−4), as t →∞.

Key points:

I The scalar curvature τ(x) measures the lack of ‘stuff’ near x .

I µn−2(X ) = 1
4π

∫
X τ(x)dvol

For example
Suppose Σ is a homogeneous Riemannian 2-sphere or 2-torus

‖tΣ‖ = Area(tΣ)

2π
+ χ(tΣ) +O(t−2) as t →∞.
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