Magnitude and other measures of metric spaces

Simon Willerton
University of Sheffield

Exploratory meeting on
the mathematics of biodiversity
CRM Barcelona
July 2012
Overview

category theory
Overview

category theory

Leinster

sets with distance
Overview

category theory

sets with distance

Leinster

geometry

Leinster

Willerton Meckes
Overview

category theory

sets with distance

diversity measures

Leinster

geography

Leinster

Willerton

Meckes

Leinster

Cobbold
Overview

- category theory
- sets with distance
- diversity measures
- geometry

Authors: Leinster, Cobbold, Willerton, Meckes
“set with distances” = “metric space”

We have

- a set of ‘points’
- some notion of distance $0 \leq d_{ij} \leq \infty$ between the ith and jth points.

Note: not every metric space can be thought of as points in Euclidean space.
“set with distances” = “metric space”

We have

- a set of ‘points’
- some notion of distance $0 \leq d_{ij} \leq \infty$ between the ith and jth points.

For example:
“set with distances” = “metric space”

We have

- a set of ‘points’
- some notion of distance $0 \leq d_{ij} \leq \infty$ between the ith and jth points.

For example:

![Diagram showing distances between points Q, SP, NP, and S. The distances are labeled as follows: Q to NP 6, Q to SP 6, Q to S 12, NP to SP 6, NP to S 6, SP to S 12.]
“set with distances” = “metric space”

We have

- a set of ‘points’
- some notion of distance $0 \leq d_{ij} \leq \infty$ between the ith and jth points.

For example:

Note: not every metric space can be thought of as points in Euclidean space.
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define 'weight' (if possible) $-\infty < w_i < \infty$ at each point i so that

$$
\sum_{j} Z_{ij} w_j = 1 \text{ for every } j
$$

Define the magnitude by

$$
|X| = \sum_{i} w_i
$$

If Z_{ij} is invertible then

$$
|X| = \sum_{ij} (Z_{ij} - 1)_{ij}
$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define ‘weight’ (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij} w_j = 1 \quad \text{for every } j$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define ‘weight’ (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij} w_j = 1 \quad \text{for every } j$$

Define the magnitude by

$$|X| = \sum_i w_i$$

If Z_{ij} is invertible then

$$|X| = \sum_{ij} (Z_{ij}^{-1})_{ij}.$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define ‘weight’ (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij} w_j = 1 \quad \text{for every } j$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define ‘weight’ (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij}w_j = 1 \quad \text{for every } j$$

Define the magnitude by

$$|X| = \sum_i w_i$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define 'weight' (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij} w_j = 1 \quad \text{for every } j$$

Define the magnitude by

$$|X| = \sum_i w_i$$
Magnitude [Leinster]

Metric space X with similarity matrix $Z_{ij} := e^{-d_{ij}}$.

Define ‘weight’ (if possible) $-\infty < w_i < \infty$ at each point i so that

$$\sum_j Z_{ij}w_j = 1 \quad \text{for every } j$$

Define the magnitude by

$$|X| = \sum_i w_i$$

If Z_{ij} is invertible then $|X| = \sum_{ij} (Z^{-1})_{ij}$.

$|X| \sim 1.47$
Example of scaling

As any space X is scaled bigger and bigger, $X \to \mathbb{N}$.
Example of scaling

As any space X is scaled bigger and bigger, $X \rightarrow N$.

\[
\begin{array}{c}
|X| \\
0 & 1 & 2 & 3
\end{array}
\]

\[
\begin{array}{c}
t \\
0.0001 & 0.001 & 0.01 & 0.1 & 1 & 10 & 100
\end{array}
\]
Example of scaling

As any space X is scaled bigger and bigger, $X \rightarrow \mathbb{N}$.
Example of scaling

As any space X is scaled bigger and bigger $|X| \to N$.
Example of bad metric space

Many metric spaces are better behaved than this. If Z is positive definite then $|X|$ is defined. For example, if X is a subset of Euclidean space then $|X|$ is defined.
Example of bad metric space

Many metric spaces are better behaved than this. If Z is positive definite then $|X|$ is defined. For example, if X is a subset of Euclidean space then $|X|$ is defined.
Example of bad metric space

Many metric spaces are better behaved than this.
Example of bad metric space

Many metric spaces are better behaved than this.

If Z is positive definite then $|X|$ is defined.

For example, if X is a subset of Euclidean space then $|X|$ is defined.
Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix Z_{ij}
- a probability (or relative abundance) p_i at the ith point.
Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix Z_{ij}
- a probability (or relative abundance) p_i at the ith point.

Effective number of species:

$$q D^Z(p) := \begin{cases}
\left(\sum_{i: p_i > 0} p_i (Zp)_i^{q-1} \right)^{\frac{1}{1-q}} & q \neq 1, \\
\prod_{i: p_i > 0} (Zp)_i^{-p_i} & q = 1, \\
\min_{i: p_i > 0} \frac{1}{(Zp)_i} & q = \infty.
\end{cases}$$
Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix Z_{ij}
- a probability (or relative abundance) p_i at the ith point.

Effective number of species:

$$qD^Z(p)$$

Recover various other measures of diversity using this. For example, obtain Hill numbers when $d_{ij} = \infty$ (i.e. $Z_{ij} = 0$) for $i \neq j$.

\[\text{Effective number of species: } qD^Z(p) \]
Model our community using
- a metric space X with similarity matrix Z_{ij}
- a probability (or relative abundance) p_i at the ith point.

Effective number of species:

$$q D^Z(p)$$

Recover various other measures of diversity using this. For example, obtain Hill numbers when $d_{ij} = \infty$ (i.e. $Z_{ij} = 0$) for $i \neq j$.
Leinster’s maximazing result

Theorem

Let X be a symmetric metric space. So Z is symmetric.
Leinster’s maximazing result

Theorem

Let X be a symmetric metric space. So Z is symmetric.

- If Z is positive definite and there is a weighting with non-negative weights ($w_i \geq 0$), then

$$D_{\text{max}}(Z) = |X|$$

i.e., the magnitude is the maximum diversity for all q, and normalizing the weights gives the maximizing probability distribution

$$p_i := \frac{w_i}{\sum w_i}$$
Leinster’s maximazing result

Theorem

Let X be a symmetric metric space. So Z is symmetric.

- **If** Z is positive definite and there is a weighting with non-negative weights ($w_i \geq 0$), then

 $$D_{\text{max}}(Z) = |X|$$

 i.e., the magnitude is the maximum diversity for all q, and normalizing the weights gives the maximizing probability distribution

 $$p_i := \frac{w_i}{\sum w_i}$$

- **Otherwise**

 $$D_{\text{max}}(Z) = \max_{Y \subset X \& w_i > 0} |Y|.$$
Summary of magnitude $|X|$

- Mathematically natural (if mysterious), c.f. category theory.
- Related to biodiversity.
- Seemingly related to geometry in Euclidean space.
- Can behave rather weirdly at times.
Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

\[E(X) := D_Z((1, \ldots, 1)) \]

For example, analogue of species richness:

\[E(X) := N \sum_{i=1}^{N} \left(N \sum_{j=1}^{N} Z_{ij} \right) - 1 \]

Note: this is not the same as \[|X| = N \sum_{i=1}^{N} \sum_{j=1}^{N} (Z_{ij} - 1) \]
Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

\[qE(X) := qD^Z \left(\left(\frac{1}{N}, \ldots, \frac{1}{N} \right) \right) \]
Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

\[qE(X) := qD^{Z} \left(\left(\frac{1}{N}, \ldots, \frac{1}{N} \right) \right) \]

For example, analogue of species richness:

\[0E(X) := \sum_{i=1}^{N} \left(\sum_{j=1}^{N} Z_{ij} \right)^{-1} \]
Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

\[q E(X) := q D^Z \left(\left(\frac{1}{N}, \ldots, \frac{1}{N} \right) \right) \]

For example, analogue of species richness:

\[0 E(X) := \sum_{i=1}^{N} \left(\sum_{j=1}^{N} Z_{ij} \right)^{-1} \]

Note: this is not the same as

\[|X| = \sum_{i=1}^{N} \sum_{j=1}^{N} (Z)_{ij}^{-1} \]
Example of scaling II
Example of scaling II
Example of scaling II

\[1000t \]

\[t \]

\[1000t \]

\[E_0(X) \]

\[|X| \]
Example of bad metric space II

The size $\mathcal{E}(X)$ is defined for all metric spaces. As X is scaled up, $\mathcal{E}(X)$ increases from 1 to N. It is much easier to calculate $\mathcal{E}(X)$ than $|X|$.
Example of bad metric space II

The size $|E(X)|$ is defined for all metric spaces. As X is scaled up, $|E(X)|$ increases from 1 to N. It is much easier to calculate $|E(X)|$ than $|X|$.
Example of bad metric space II

The size $0^n(E(X))$ is defined for all metric spaces. As X is scaled up, $0^n(E(X))$ increases from 1 to N. It is much easier to calculate $0^n(E(X))$ than $|X|$.
Example of bad metric space II

▶ The size $^0E(X)$ is defined for all metric spaces.
▶ As X is scaled up $^0E(X)$ increases from 1 to N.
▶ It is much easier to calculate $^0E(X)$ than $|X|$.
Zooming in on a space with 6400 points
Dimension

In a metric space we can scale all the distances. What should happen to the size?
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

1 2
2 4

Think of dimension as how the size changes when the distances are changed. Given 'size' can see if it gives a good idea of dimension.
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

\[\text{2 times as big} \]
In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

\[\text{2 times as big} \]
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

2 times as big
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

2 times as big
In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

- 2 times as big
- 4 times as big
In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

\[2^1 = 2 \text{ times as big} \]

\[2^2 = 4 \text{ times as big} \]
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

\[2^1 = 2 \text{ times as big} \]

\[2^2 = 4 \text{ times as big} \]

Think of dimension as how the size changes when the distances are changed.
Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

\[2^1 = 2 \text{ times as big} \]

\[2^2 = 4 \text{ times as big} \]

Think of dimension as how the size changes when the distances are changed. Given ‘size’ can see if it gives a good idea of dimension.
Size of rectangles with 6400 points

![Graph showing the size of rectangles with 6400 points as a function of interpoint distance. The x-axis represents the interpoint distance, ranging from 0.00001 to 10, and the y-axis represents the size, ranging from 0 to 6400. A curve illustrates the relationship, indicating that the size increases significantly as the interpoint distance increases.]
Size of rectangles with 6400 points

interpoint distance

- 10 × 640
- 80 × 80
- 1 × 6400
Rectangles with 6400 points and ‘dimension’

There is geometric information is \(0 \leq E \leq 10 \times 640 \).
Rectangles with 6400 points and ‘dimension’

There is geometric information in $E(X)$.

![Graph showing growth rate of E vs. interpoint distance for different rectangles.](image)
Rectangles with 6400 points and ‘dimension’

There is geometric information is $^0E(X)$.